Radar based tank level measurement using machine learning : Agricultural machines

University essay from Linköpings universitet/Programvara och system

Abstract: Agriculture is becoming more dependent on computerized solutions to make thefarmer’s job easier. The big step that many companies are working towards is fullyautonomous vehicles that work the fields. To that end, the equipment fitted to saidvehicles must also adapt and become autonomous. Making this equipment autonomoustakes many incremental steps, one of which is developing an accurate and reliable tanklevel measurement system. In this thesis, a system for tank level measurement in a seedplanting machine is evaluated. Traditional systems use load cells to measure the weightof the tank however, these types of systems are expensive to build and cumbersome torepair. They also add a lot of weight to the equipment which increases the fuel consump-tion of the tractor. Thus, this thesis investigates the use of radar sensors together witha number of Machine Learning algorithms. Fourteen radar sensors are fitted to a tankat different positions, data is collected, and a preprocessing method is developed. Then,the data is used to test the following Machine Learning algorithms: Bagged RegressionTrees (BG), Random Forest Regression (RF), Boosted Regression Trees (BRT), LinearRegression (LR), Linear Support Vector Machine (L-SVM), Multi-Layer Perceptron Re-gressor (MLPR). The model with the best 5-fold crossvalidation scores was Random For-est, closely followed by Boosted Regression Trees. A robustness test, using 5 previouslyunseen scenarios, revealed that the Boosted Regression Trees model was the most robust.The radar position analysis showed that 6 sensors together with the MLPR model gavethe best RMSE scores.In conclusion, the models performed well on this type of system which shows thatthey might be a competitive alternative to load cell based systems.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)