Topological properties of flat bands in generalized Kagome lattice materials

University essay from KTH/Fysik

Abstract: Topological insulators are electronic materials that behave like an ordinary insulator in their bulk but have robust conducting states on their edge. Besides, in some materials the band structure presents completely flat bands, a special feature leading to strong interactions effects. In this thesis we present a study of the edge states of three particular two-dimensional models presenting flat bands: the honeycomb-Kagome, the $\alpha$--graphyne and a ligand decorated honeycomb-Kagome lattice models. We extend earlier work done on these lattice models by focusing on the topological nature of the edge states involving flat bands. We start by giving a review of the band structure theory and the tight-binding approximation. We then present several main topics in two-dimensional topological insulators such as the notion of topological invariants, the Kane-Mele model and the bulk-edge correspondence. Using these theoretical concepts we study the band structure of these lattices firstly without taking into account the spin and spin-orbit interations. We finally add these interactions to get their bulk band structures as well as the edge states. We observe how these spin-orbit interactions relieve degeneracies and allow for the emergence of edge states of topological nature. Since the lattices studied have an arrangement based on the honeycomb-Kagome lattice, two-dimensional materials having the structures of these lattices can be designed assembling metal ions and organic ligands. Therefore the results obtained could be used as a first hint to create new two-dimensional materials presenting topological properties.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)