Tribology of Polymer Composite with Low Load Application for Automotive Industries

University essay from Luleå tekniska universitet/Institutionen för teknikvetenskap och matematik

Author: Martin Asuquo; [2022]

Keywords: ;

Abstract: In recent times, there has been an increased interest in replacing conventional metals and synthetic fiber composites in various automobile parts with natural fiber polymer composites. These natural fiber composites offer benefits over conventional materials in terms of reduction in weight, lower cost, comparable high specific properties such as specific stiffness and strength, low abrasion property, and availability of these materials. Environmetal concerns and the need to make eco-friendly materials also encouraged the use of natural fiber polymer composites (NFPC) for various automotive applications, as their usage reduces the emission of harmful pollutants, thereby providing a safer and cleaner environment. The reduction in weight of these materials also helps to reduce fuel consumption in cars. Therefore, this study focused on the investigation and characterization (mechanical, thermal, and tribological) of hemp fibers reinforced polypropylene made with virgin (Biolite) and recycled (Revo) composites, consisting of different fiber loadings from 10% to 30% for possible automotive applications. The result showed an improvement in the compressive properties of the composite as hemp fiber loading increases, with the recycled composite exhibiting a better compression performance in comparison to virgin composites. Revo 41 had the best compressive strength  and a 35% higher value than Biolite 2 of the same hemp fiber loading. However, there was a decrease in the fracture toughness of the composites as hemp fiber loading increases. This was more significant at about 27% from Biolite 1 to Biloite 2, Revo 41 experienced a slight improvement of 15% in fracture toughness with 20% hemp fiber loading. Revo 35 composite which had more degradation steps showed the best thermal performance at low temperature region with a degradation temperature of 276°C, while Biolite 1 at 444°C exhibited the best thermal stability at high temperature degradation. In comparing the tribological behavior of pure polypropylene with the composites, the composites exhibited a better tribological performance as there was a slight decrease in the coefficient of friction and wear rates of composites as the hemp fiber loading increases. Revo 41 of 20% hemp fiber fiber loading had the best wear performance. Considering its strength and slightly better tribological performance, Revo 41 is considered the best performing composite for automotive applications in comparison to the other composites.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)