Integrating Design Optimization in the Development Process using Simulation Driven Design

University essay from Linköpings universitet/Maskinkonstruktion

Abstract: This master thesis has been executed at Scania CV AB in Södertälje, Sweden. Scania is a manufacturer of heavy transport solutions, an industry which is changing rapidly in order to meet stricter regulations, ensuring a sustainable future. Continuous product improvements and new technologies are required to increase performance and to meet markets requirements. By implementing design optimization in the design process it enables the potential of supporting design exploration, which is beneficial when products with high performance are developed. The purpose was to show the potential of design optimization supported by simulation driven design as a tool in the development process. To examine an alternative way of working for design engineers, elaborating more competitive products in terms of economical and performance aspects. Furthermore, to minimize time and iterations between divisions by developing better initial concept proposals. The alternative working method was developed iteratively in parallel with a case study. The case study was a suction strainer and were used for method improvements and validation, as well as decision basis for the included sub-steps. The working method for implementing design optimization and simulation driven design ended up with a procedure consisted of three main phases, concept generation, detail design and verification. In the concept generation phase topology optimization was used, which turned out to be a beneficial method to find optimized solutions with few inputs. The detail design phase consisted of a parameterized CAD model of the concept which then was shape optimized. The shape optimization enabled design exploration of the concept which generated valuable findings to the product development. Lastly the optimized design was verified with more thorough methods, in this case verification with FE-experts. The working method was tested and verified on the case study component, this resulted in valuable knowledge for future designs for similar components. The optimized component resulted in a performance increase where the weight was decrease by 54% compared with a reference product.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)