Development of a microfluidic device to study simultaneous crystallization in the LIBs recycling process

University essay from KTH/Kemiteknik

Abstract: Återvinning av litiumjonbatterier (LIB) är avgörande på grund av kritiska råmaterialreserver och miljöhänsyn vid kassering. Hydrometallurgisk LIB-återvinning, en framstående industriell teknik, står inför kostnadseffektivitets- och komplexitetsutmaningar. Samtidig kristallisering visar lovande för effektivisering av återvinning genom att extrahera föreningar från förbrukad batterilut med flera komponenter, vilket kräver hög renhet och effektiv kristallseparation. Detta innebär emellertid att man förhindrar oönskade polykristallina partiklar och samkristaller.Kristallisering är vanligt vid LIB-återvinning, men vanligtvis från enkomponentlösningar för att undvika föroreningar. Kärnbildningskontroll, särskilt i flerkomponentlösningar, är fortfarande utmanande, vilket påverkar industriell effektivitet. Sådd, en vanlig kontrollmetod, inducerar ofta oavsiktliga polykristallina partiklar och vätskeinneslutningar, som understuderas på grund av experimentella begränsningar. Microfluidics erbjuder ett värdefullt verktyg för att studera kristallisationskinetik, växla från utrustningsbaserad till prediktiv fysikalisk-kemisk design. Förbättrad blandning och värmeväxling gör den idealisk för kärnbildningsforskning under kristallisation. Denna avhandling fokuserar på avgörande aspekter av samtidig kristallisation. Huvudsyftet är att utveckla en optimerad mikrofluidisk design och simulera mikrofluidikkanalen för att bestämma initiala processparametrar för experiment samt att få det mest förutsägbara området för kristallbildning inom mikrofluidik. Utmaningar i de mikrofluidiska kristallisationssystemen, såsom kanalblockering, som lätt kan uppstå på grund av kristallbildning eller agglomerationer, har tyvärr begränsat de experimentella resultaten. Icke desto mindre kommer denna avhandling att stödja ytterligare experiment med mikrofluidikanordningen under mikroskopi som kommer att hjälpa till att övervinna dessa utmaningar. Arbete med att minska begränsningarna i denna avhandling kan hjälpa till att förstå multikomponentkristallisationen i realtid och faktiskt den nödvändiga uppställningen och infrastrukturen för mikrofluidikexperiment och i förlängningen bidra till att minska de hydrometallurgiska stegen i komplex metallåtervinning. Därför bidrar det till att främja områdena batteriåtervinning, mikrofluidik och samtidig kristallisering.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)