Centralised MPC for Long-term Voltage Stability Control of Power System

University essay from KTH/Skolan för elektroteknik och datavetenskap (EECS)

Abstract: In a power system it is important to keep voltages at specific levels at network buses. Deviations from that can lead to reduced efficiency of transferred power or, in more severe cases, widespread power outages affecting large parts of society. There exists a variety of power system devices that have the ability to regulate the voltage levels. These devices have maximum and minimum control capacities and may have additional operational constraints. It is desired to keep the control capacity of these actuators close to neutral operation so that they have the ability to respond to future disturbances. Due to the nature of such a control problem, a suitable tool is Model Predictive Control. In this thesis, a centralised model predictive control is designed for long-term voltage stability control of a power system. The system model employed is a two-area power system model, where each area includes a network of generators and loads. The model predictive control regulates the tap position of a tap-changing transformer and the reactive power compensation provided by two capacitor banks. In this thesis, it is shown that a centralised model predictive controller successfully maintains voltages within the desired range for a 3.5 % longer duration compared to a decentralised control approach when facing a voltage collapse scenario. Additionally, thanks to its predictive capabilities, it efficiently dampened oscillations in the post-transient steadystate scenario, leading to a 6.6 % shorter settling time than that observed with the decentralised control approach.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)