Sharing Quantum Resources Across a Metropolitan Network

University essay from KTH/Tillämpad fysik

Abstract: Kvantsammanflätning har varit ett populärt ämne bland fysiker i snart 100 år då det tydligt belyser hur annorlunda kvantmekanikens värld är jämfört med den klassiska verklighet vi lever i. Med tiden har kvantsammanflätning blivit mer och mer välförstått och teknologier ämnade att utnyttja det har de senaste årtionden kommit allt närmare till industriell använding. Kvantdatorer är fortfarande i forskningsstadiet men idag excisterar det en kvantdator som kan lösa vissa problem betydligt mycket snabbare än en klassisk dator. På grund av algorithmer som Shors faktoriseringsalgoritm och Grovers sökalgoritm så riskerar dagens krypteringsprotokoll för kommunikation att bli otillräckliga. Som svar på detta har en fysikalisk icke-hackbar krypterings metodik tagits fram i form av QKD. Det baseras på att generara krypteringsnycklar från slumptal och att dessa distribueras tack vare kvantsammanflätning. För att lyckas med detta så krävs generering av sammanflätade kvanttillstånd, kvantbitar, samt singel-fotonsdetektorer. I den här masteruppsatsen har en kvantprick karaktäriserats och används för att generera sammanflätade kvantbitar i QNP-gruppens lab på KTH samt för att skicka enstaka fotoner via Stockholms fibernät till Ericsson i Kista där de detekteras av singel foton detectorer. Multifoton sannolikheten har uppmäts till 0.049 för exciton fotoner samt 0.169 för biexciton fotoner i labbet medan ett värde på 0.176 har uppmäts för exciton fotoner detekterade hos Ericsson, vilket är betydligt lägre än singel emission gränsen 0.5 (dvs foton källan sänder ut singel fotoner). Synkronisering av data är avgörande för att få QKD att fungera varpå en post process-tidssynkroniserings metod baserad på biexciton-exciton kaskad-sönderfall har implementerats i lab.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)