Few-Shot Learning for Quality Inspection

University essay from Högskolan i Halmstad/Akademin för informationsteknologi

Abstract: The goal of this project is to find a suitable Few-Shot Learning (FSL) model that can be used in a fault detection system for use in an industrial setting. A dataset of Printed Circuit Board (PCB) images has been created to train different FSL models. This dataset is meant for evaluating FSL models in the specialized setting of fault detection in PCB manufacturing. FSL is a part of deep learning that has seen a large amount of development recently. Few-shot learning allows neural networks to learn on small datasets. In this thesis, various state-of-the-art FSL algorithms are implemented and tested on the custom PCB dataset. Different backbones are used to establish a benchmark for the tested FSL algorithms on three different datasets. Those datasets are ImageNet, PCB Defects, and the created PCB dataset. Our results show that ProtoNets combined with ResNet12 backbone achieved the highest accuracy in two test scenarios. In those tests, the model combination achieved 87.20%and 92.27% in 1-shot and 5-shot test scenarios, respectively. This thesis presents a Few-Shot Anomaly Detection (FSAD) model based on Vision Transformers (ViT). The model is compared to the state-of-the-art FSAD model DevNet on the MVTec-AD dataset. DevNet and ViT are chosen for comparison because they both approach the problem by dividing images into patches. How the models handle the image patches is however very different. The results indicate that ViT Deviation does not obtain as high AUC-ROC and AUC-PR scores as DevNet. This is because of the use of the very deep ViT architecture in the ViT Deviation model. A shallower transformer-based model is believed to be better suited for FSAD. Improvements for ViT Deviation are suggested for future work. The most notable suggested improvement is the use of the FS-CT architecture as a FSAD model because of the high accuracy it achieves in classification.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)