Determining the alignment of Solar Orbiter instruments STIX and EUI during solar flares

University essay from Uppsala universitet/Institutet för rymdfysik, Uppsalaavdelningen

Author: Sofia Tynelius; [2022]

Keywords: Solar flares; the Sun; STIX; EUI; alignment; pointing;

Abstract: Solar Orbiter is a mission launched in 2020 that will take images closer than ever of the Sun. It has ten instruments on board, including The Spectrometer/Telescope for Imaging X-rays (STIX) and The Extreme Ultraviolet Imager (EUI). STIX is a hard X-ray imaging spectrometer which observes bremsstrahlung from the non-thermal accelerated electrons in the footpoints of solar flares and from thermal hot plasma in flare loops. EUI consists of three telescopes, including a Full Sun Imager which is a one-mirror telescope that observes the solar corona and chromosphere in extreme ultraviolet (EUV) wavelengths 174Å and 304Å, respectively.   The purpose of the project was to determine the alignment between STIX and EUI to better understand and improve the pointing of STIX. It is important to know the accuracy of the pointing before using the instruments for science. The alignment was studied by looking at the flare location of the two instruments for about 30 flares. The flare location was approximated to be the brightest pixel in the image. The aspect solution of STIX was applied and this was also compared to the flare seen by EUI. For some of the flares, also imaging data from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) was used to get a more detailed comparison. One flare was studied in more detail, using thermal and non-thermal emission seen by STIX, EUV emission seen by EUI 174Å and AIA 171Å as well as UV emission seen by AIA 1600Å. For four flares, the flare location was determined from the visible ribbons and loops instead of the brightest pixel. The methods of finding the flare location by brightest pixel and by looking at flare features were compared.   The average difference between the EUI and STIX flare location was within 12 arcseconds with a standard deviation between 18 and 42 arcseconds for the brightest pixel method. This difference has two main contributions: the accuracy of the STIX aspect solutions and the accuracy of identifying the common source features in EUV and X-rays. To increase the accuracy of finding common sources, four flares with well defined ribbons and loops were analyzed in detail. For these events, the accuracy of the STIX aspect system was determined to be better than 10.5 arcseconds. This is still significantly higher than the design requirements of being better than 4 arcsecs. Detailed analysis clearly showed that the method of determining the flare location by brightest pixel was not accurate enough to evaluate the STIX pointing. Further studies need to be done to improve the aspect solution.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)