Concurrent Engineering and Generative Design Methodologies Applied to the Design and Analysis of a Future Space Mission Using COMET

University essay from Luleå tekniska universitet/Rymdteknik

Abstract: Concurrent Design studies have become of great importance in the space industry reducing the time and costs associated to the feasibility assessments for future space missions. This has also helped companies and space agencies to be at the forefront of this fast-developing sector. These collaborative sessions are carried out by an interdisciplinary group of engineers, experts and customers who are capable of achieving an optimal design solution within a short period of time, typically a few weeks. They make use of dedicated tools, like COMET® which is developed by RHEA Group, to store and share the data within the team, as well as with other partners or stakeholders. As new software tools are developed for Model-Based Systems Engineering (MBSE) applications, parallel improvements are needed for Concurrent Engineering teams, since this can be one of the first steps for a model-based approach. One of the main constraints during Concurrent Design studies is the limited number of analysed options, since evaluating the entire design space would require longer sessions and increased time availability from the experts, and would consequently result in more expensive projects. One solution for this problem can be the application of generative engineering technologies to Concurrent Design studies. This method would allow to explore the entire design space by first defining the study model together with the system constraints, and then using a software to automatically generate all the possible architecture variants for that specific model. An example of state-of-the-art technologies for generative design is Simcenter™ Studio, a recently released tool from Siemens Digital Industries Software. The complexity of space missions requires a very detailed definition and evaluation of the system architecture, even at the early stages of the design process. Therefore, research is needed on the use and implementation of new methodologies that will tackle the challenges related to Concurrent Design. The context of the research presented in this thesis is the new project proposed by RHEA Group, Siemens and OHB, called Generative Concurrent Design (GCD). It aims to combine their software tools COMET® and Simcenter Studio, bringing generative engineering to Concurrent Design. One of the main advantages is achieving more optimised solutions in shorter times, reducing the number of necessary iterations on the system architecture during the entire project lifecycle. An enhanced feature of this tool is the possibility for the users to explore the solutions trade space with the support of an Artificial Intelligence (AI) based system. This thesis presents and demonstrates the application of the GCD methodology to a use case at system level, focused on the evaluation of configuration and assembly options in the design of a spacecraft. Using the mission EnVision, selected in 2021 by ESA’s Science Programme Committee, as the design baseline, the GCD methodology has been implemented in this use case study making use of both software tools and showing potential future features and applications.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)