Development of simplified power grid models in EU project Spine

University essay from KTH/Skolan för elektroteknik och datavetenskap (EECS)

Abstract: The electric power system is among the biggest and most complex man-made physical network worldwide. The increase of electricity demand, the integration of ICT technologies for the modernization of the electric grid and the introduction of intermittent renewable generation has resulted in further increasing the complexity of operating and planning the grid optimally. For this reason the analysis of large-scale power systems considering all state variables is a very complicated procedure. Thus, it is necessary to explore methods that represent the original network with smaller equivalent networks in order to simplify power system studies. The equivalent network should provide an accurate and efficient estimation of the behavior of the original power system network without considering the full analytical modelling of the grid infrastructure.   This thesis investigates partitioning methods and reduction methodologies in order to develop a proper reduction model. The K-means and K-medoids clustering algorithms are employed to partition the network into numerous clusters of buses. In this thesis the Radial, Equivalent, and Independent (REI) method is further developed, implemented, and evaluated for obtaining a reduced, equivalent circuit of each cluster of the original power system. The basic idea of REI method is to aggregate the power injections of the eliminated buses to two fictitious buses through the zero power balance network.   The method is implemented using Julia language and the PowerModels.jl package. The reduction methodology is evaluated using the IEEE 5-bus, 30-bus, and 118-bus systems, by comparing a series of accuracy and performance indices. Factors examined in the comparison include the chosen number of clusters, different assumptions for the slack bus as well as the effect of the imposed voltage limits on the fictitious REI buses.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)