Nutrient limitation for coastal areas and estuaries in the Baltic Sea : Applying linear regression analysis and TN/TP ratio to determine the limiting nutrient

University essay from Uppsala universitet/Institutionen för ekologi och genetik

Abstract: The purpose of this study was to determine the limiting nutrient in a set of coastal areas and estuaries in the Baltic Sea. Although the subject as been studied for several decades, no clear consensus has been reached in the scientific community as to whether primary production is limited by phosphorus or nitrogen. A total of five coastal areas, all located on the east coast of Sweden, were assessed regarding their limiting nutrient by using three methods. The first method was applying linear regression analysis on measured TP and TN concentration together with chlorophyll-a and Secchi depth. The data was collected from sampling programs stretching back to the 1970s and 80s, studying the summer period May to September for all sites but one, were the period April to October was studied. The second method calculated the TN/TP ratio during the summer period and compared it to the Redfield ratio. Thirdly, basic mass-balance calculations were carried out, with empirical data on the external loads and calibrated with the yearly average concentration in the surface water (0–10 m). From the calculations, both the annual external and internal load of TP and TN was obtained. The different TP and TN loads were likewise tested for a correlation with the measured summer chlorophyll-a concentration and Secchi depth. The results of using linear regression analysis on measured concentrations were mostly inconclusive, as the TP and TN concentrations for all sites and most years were related to each other. Consequently both nutrients often gave equal correlation coefficients. Similarly the TP and TN loads also matched each other for most sites and years, inherently obtaining the same inconclusive, but also contradictory results, as when using the measured concentrations. The TN/TP ratio indicated, for one site that it was limited by phosphorus and another site possibly nitrogen limitation. The ratio in the other sites periodically dropped between nitrogen and phosphorus limitation over the years. Thus it was difficult to draw an overall conclusion as to what nutrient was the limiting one for all the sites. However analysing the results from the individual sites showed that three of the five sites had signs of phosphorus limitation. Two factors were deemed as being the main reasons as to why the methods did not achieve more conclusive results. The first factor was the empirical data, which varied in frequency and extent over the studied time periods and between sites, making representative concentrations difficult to calculate and evaluate. The second was the matching trends between both the concentrations and the loads of TP and TN. To achieve a better result one nutrient could be increased or decreased while one remains relatively constant. The problem with such an experiment would be controlling the inflow of nutrients from the adjacent sea. 

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)