Path Integrals in Quantum Mechanics and Low-Dimensional QFT

University essay from Uppsala universitet/Teoretisk fysik

Abstract: The focus of this thesis is to introduce the path integral and some of its applications. One interpretation of quantum mechanics is that a microscopic system which moves from an initial- to a final state moves through each possible intermediate state. The path integral uses the principle of least action to sum over all such intermediate states to find the evolution of a quantum mechanical system. We compare the path integral approach to that of the Schrödinger equation and show that the two give an equivalent description of quantum mechanics. To demonstrate the usefulness of the path integral, we introduce low-dimensional quantum field theory (QFT). In particular, we discuss Feynman diagrams. The idea behind Feynman diagrams is to sum over all possible weak interactions between fields to evaluate the properties of a system through the path integral. We also carry out a computation of a low energy effective action in a 0-dimensional model. The result of the computation shows that there is free energy also in a vacuum. Finally, we briefly generalize some of the previous discussion to 1-dimensional QFT. To give an example of a practical application, we give a qualitative discussion of how the path integral can be applied to statistical mechanics to predict the behaviour of superfluids.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)