Detection and localization of cough from audio samples for cough-based COVID-19 detection

University essay from KTH/Skolan för elektroteknik och datavetenskap (EECS)

Abstract: Since February 2020, the world is in a COVID-19 pandemic [1]. Researchers around the globe are pitching in to develop a fast reliable, non-invasive testing methodology to solve this problem and one of the key directions of research is to utilize coughs and their corresponding vocal biomarkers for diagnosis of COVID-19. In this thesis, we propose a fast, real-time cough detection pipeline that can be used to detect and localize coughs from audio samples. The core of the pipeline utilizes the yolo-v3 model [2] from vision domain to localize coughs in the audio spectrograms by treating them as objects. This outcome is transformed to localize the boundaries of cough utterances in the input signal. The system to detect coughs from CoughVid dataset [3] is then evaluated. Furthermore, the pipeline is compared with other existing algorithms like tinyyolo-v3 to test for better localization and classification. Average precision([email protected]) of yolo-v3 and tinyyolo-v3 model are 0.67 and 0.78 respectively. Based on the AP values, tinyyolo-v3 performs better than yolo-v3 by atleast 10% and based on its computational advantage, its inference time was also found to be 2.4 times faster than yolo-v3 model in our experiments. This work is considered to be novel and significant in detection and localization of cough in an audio stream. In the end, the resulting cough events are used to extract MFCC features from it and classifiers were trained to predict whether a cough has COVID-19 or not. The performance of different classifiers were compared and it was observed that random forest outperformed other models with a precision of 83.04%. It can also be inferred from the results that the classifier looks promising, however, in future this model has to be trained using clinically approved dataset and tested for its reliability in using this model in a clinical setup. 

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)