System perspective of rooftop solar PVs in the Swedish industry sector : A case study of GEHAB in Småland

University essay from Linnéuniversitetet/Institutionen för byggd miljö och energiteknik (BET)

Abstract: To reach the Swedish goal of reaching a completely fossil-free electricity sector by the year 2040, there is a need for an increased rate of installed renewable electricity sources. Companies have the opportunity to work towards this goal by investing in solar power technologies, which results in a lowered electricity bill, and an additional revenue when electricity is sold to the grid. As a result, the investment usually pays back within a reasonable timeframe. GEHAB is a company located that is located in Alvesta, Sweden, and they are interested in investing in rooftop solar power. This thesis investigates the potential and effects of such an investment at the company through energy simulations. This is done through four different scenarios, which aim at finding the largest possible installation, the most cost-optimal installation, according to the Levelized Cost Of Energy (LCOE), the impact of an added battery installation and finding the current issues with becoming a net-zero consumer of electricity. Finally, a sensitivity analysis was made to investigate how different factors impacted the LCOE. The results showed that the most cost-optimal size for the company to invest in was a 215 kWp installation, which is smaller than the maximum possible size of 335 kWp that can be installed on the rooftop. Such an installation would have an LCOE of -366 SEK/MWh when the avoided costs are included. The discounted payback time of that investment was 11.3 years. The involvement of batteries showed that they would lead to a higher LCOE and for the largest possible solar installation size, including a battery, means that it would not pay back within the lifetime of the PVs. Finally, the net-zero electricity consumption scenario found that currently, the largest issue to reach this scenario is that there is a regulation that limits solar installations to 500 kWp to avoid an energy tax.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)