Single and multiple step forecasting of solar power production: applying and evaluating potential models

University essay from Uppsala universitet/Institutionen för teknikvetenskaper

Abstract: The aim of this thesis is to apply and evaluate potential forecasting models for solar power production, based on data from a photovoltaic facility in Sala, Sweden. The thesis evaluates single step forecasting models as well as multiple step forecasting models, where the three compared models for single step forecasting are persistence, autoregressive integrated moving average (ARIMA) and ARIMAX. ARIMAX is an ARIMA model that also takes exogenous predictors in consideration. In this thesis the evaluated exogenous predictor is wind speed. The two compared multiple step models are multiple step persistence and the Gaussian process (GP). Root mean squared error (RMSE) is used as the measurement of evaluation and thus determining the accuracy of the models. Results show that the ARIMAX models performed most accurate in every simulation of the single step models implementation, which implies that adding the exogenous predictor wind speed increases the accuracy. However, the accuracy only increased by 0.04% at most, which is determined as a minimal amount. Moreover, the results show that the GP model was 3% more accurate than the multiple step persistence; however, the GP model could be further developed by adding more training data or exogenous variables to the model.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)