Investigation of switching power losses of SiC MOSFET : used in a DC/DC Buck converter

University essay from KTH/Skolan för elektroteknik och datavetenskap (EECS)

Abstract: All DC/DC converter products include power electronic circuits for power conversion.It is important to find an efficient way for power conversion to reduce power losses and reduce the need for cooling and achieve environmentally friendly solutions.The use of semiconductor switches of wide band gap type is a solution to the problem.Therefore, the investigation of the SiC MOSFET in DC/DC converters is of crucial importance for the reduction of power losses.The thesis investigates the SiC MOSFET in three different tests.The efficiency test, the temperature test and the double pulse test.In the efficiency, the MOSFET STC3080KR and NTH4L022N120M3S are compared with their respective simulation made on PLECS.While in the temperature test the STC3080KR is investigated at different frequencies.In Double Pulse Test the MOSFET STC3080KR with 4-pin (TO-247 4L) package is compared with the MOSFET SCT3080KLHRC11 with 3-pin package (TO-247 N).The efficiency test shows that the MOSFET SCT3080KR in the practical test gives an efficiency in the range of 96,5-96,1% at 110kHz, 96-95,4% at 150kHz and 95,8-94,2% at 180kHz.While, the NTH4L022N120M3S gives an efficiency in the range of 98,1-97,1% at 110kHz, 96,3-96,2% at 150kHz and 96,1-95,5% at 180kHz.The efficiency given by the simulation is higher than the actual efficiency for both MOSFETs.However, the shape of the curves in the practical part matches the simulated one.The efficiency is not the same since the simulation do not consider all the losses present in the practical part.The temperature test shows that the temperature for the high side and low side increases when the frequency and the load current increases.However, some results show that when the load current increases at some point the low-side MOSFET will reach the temperature of the high-sided MOSFET and at the end it will exceed its value. This is due to the increment of the conduction losses since the low side MOSFET is basically the body diode incorporated in the MOSFET.Finally, the Double Pulse Test shows that the TO-247 N (3-pin) package switches with less source inductance compared to the TO-247 4L (4-pin) package.Therefore, the MOSFET SCT3080KLHRC11 (TO-247 N package) needs more time during the switching and which means that the switching power losses will be higher in comparison to the SCT3080KR as shown in Table 5.2 and Table 5.1.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)